PUBLIC WORKS TECHNICAL BULLETIN 200-1-24 15 OCTOBER 2003

QUANTIFYING WASTE GENERATED FROM BUILDING REMODELING

Public Works Technical Bulletins are published by the U.S. Army Corps of Engineers, 441 G Street, NW, Washington, DC 20314-1000. They are intended to provide information on specific topics in areas of Facilities Engineering and Public Works. They are not intended to establish new DA policy.

DEPARTMENT OF THE ARMY
 U.S. Army Corps of Engineers
 441 G Street, NW
 Washington, DC 20314-1000

CEMP-R

Public Works Technical Bulletin
15 October 2003
No. 200-1-24

FACILITIES ENGINEERING ENVIRONMENT

QUANTIFYING WASTE GENERATED FROM BUILDING REMODELING

1. Purpose. This Public Works Technical Bulletin (PWTB) transmits guidance on determining and managing solid wastes generated from remodeling projects.
2. Applicability. This PWTB applies to all U.S. Army facilities engineering activities.
3. References.
a. Army Regulation (AR) 200-1, "Environmental Protection and Enhancement," 21 February 1997.
b. AR 420-49, "Utility Services," 28 April 1997.
c. Memo, PDASA (I\&E), 18 January 2001, "Deconstruction and Re-Use of Excess Army Buildings."
d. PWTB 420-49-32, "Selection of Methods for the Reduction, Reuse, and Recycling of Demolition Waste," 16 July 2001.
4. Discussion.
a. AR 420-49 contains policy on the proper management of municipal solid wastes, including construction wastes.
b. Many Army construction projects involve remodeling or renovation of existing buildings to serve a new function. Waste from these projects can significantly contribute to an installation's total solid waste stream. Although waste from remodeling is less than from demolition projects, quantities of waste generated are not known due to the diverse nature of these projects. This PWTB describes a method for determining waste
quantity from remodeling projects, and applies this method to three typical Army examples.
c. Appendix A contains the estimation method, Army examples, and an extensive list of conversion factors used.
5. Points of Contact. HQUSACE is the proponent for this document. The POC at HQUSACE is Mr. Malcolm E. McLeod, CEMP-RI, 202-761-0206, or e-mail:
Malcolm.E.Mcleod@HQ02.usace.army.mil.
Questions and/or comments regarding this subject should be directed to the technical POC:
U.S. Army Engineer Research and Development Center

Construction Engineering Research Laboratory
ATTN: CEERD-CN-E (Stephen D. Cosper)
2902 Newmark Drive
Champaign, IL 61822-1072
Tel. (217) 398-5569
FAX: (217) 398-5564
e-mail: Stephen.D.Cosper@usace.erdc.army.mil
FOR THE COMMANDER:

Donald L. Basham, P.E.
Chief, Engineering and Construction
Directorate of Civil Works

APPENDIX A

INTRODUCTION

Much has been written and discussed on the subject of solid wastes from construction and demolition projects. Demolition materials are especially easy to quantify by simply weighing (usually done in any case) all the debris and estimating material proportions. Relatively little has been written regarding wastes from renovation, or remodeling projects. "Renovation" is hard to define and it's hard to make comparisons because these projects vary greatly in scope. Renovation projects might include everything from interior cosmetic changes, to re-roofing, to a complete "gut" of the building.

The U.S. Environmental Protection Agency (EPA) reports [USEPA 1998] that remodeling projects typically produce more waste than construction projects per equivalent floor area. This is because remodeling usually involves the two steps of removing, then installing building components, with both activities generating waste. They estimate that remodeling waste comprises 44 percent of the total C/D waste stream overall (1996), with residential remodeling contributing a higher fraction.

Table A-1 shows remodeling waste data that the EPA gleaned from a few sources.
Table A-1. Waste Generation Rates for Selected Remodeling Projects [USEPA 1998].

Project Type	Size $\left(\mathbf{f t}^{2}\right)$	Total Waste $(\mathbf{l b})$	Waste Generation Rate $\left(\mathbf{l b} / \mathrm{ft}^{\mathbf{2}}\right)$
Kitchen and room addition	560	11,020	19.7
Bathroom	40	2,883	72.1
Kitchen	150	9,600	64.0
Total House	1,330	26,000	19.6

As this table shows, waste generation rates vary greatly depending on the type of project; therefore, any general discussion of remodeling wastes is of questionable value. The EPA report referenced here does have some additional data regarding specific types of projects.

This Public Works Technical Bulletin (PWTB) looks at three Army renovation projects, selected to be representative of typical jobs across the Army. The goal is to calculate, in detail, the types of waste materials that these projects generate. This will allow project managers to plan the work with a focus on recycling. For example, if we know that a given project will generate so many tons of scrap steel from a particular activity, then we can plan to have a recycling container on site to receive this material at the appropriate time. Often, renovation projects are (or could be) phased, such that a given type of waste material would be generated all at one time. Project managers can replicate this exercise for different projects.

This PWTB does not directly address recycling avenues for specific waste streams. This information is available in other sources, e.g., PWTB 420-49-32, Selection of Methods for the Reduction, Reuse, and Recycling of Demolition Waste [Dolan 1999] and the NAHB Research Center's publications, including A Field Guide for Residential Remodelers [Meyer 2001].

The bulk of the data presented in this report was generated through "quantity take offs" based on the construction specifications and drawings. The methodology used is described in detail in the next
section. The materials to remove as described in the specifications were verified in the field and are shown in the attached figures.

Projects selected for description in this appendix are:

- A large, multi-wing building at Fort Bragg, converted to modern office space
- A family housing duplex at Fort Campbell, stripped and reconfigured with minimal structural changes
- A barracks at Fort Bragg, completely stripped down to concrete and steel structure, then rebuilt.
U.S. standard units of measure are used throughout this appendix. A table of conversion factors for Standard International (SI) units is provided below.

Table A-2. SI Conversion Factors.

$$
\begin{aligned}
1 \mathrm{ft} & =0.305 \mathrm{~m} \\
1 \mathrm{yd} & =0.9144 \mathrm{~m} \\
1 \mathrm{sq} \mathrm{ft} & =0.093 \mathrm{~m}^{2} \\
1 \mathrm{sq} \mathrm{yd} & =0.836 \mathrm{~m}^{2} \\
1 \mathrm{cu} \mathrm{yd} & =0.764 \mathrm{~m}^{3} \\
1 \mathrm{lb} & =0.453 \mathrm{~kg} \\
{ }^{\circ} \mathrm{F} & =\left({ }^{\circ} \mathrm{C} \times 1.8\right)+32
\end{aligned}
$$

1. Quantifying Waste Materials

1.1 General

The prediction of waste generation from a remodeling or renovation project would allow for development of a recycling project plan (or waste management plan). It would allow the recycling project manager to perform accurate economic analysis, market identification, and plan for storage/handling. Accurately predicting the quantity of individual waste materials from a remodeling project is problematic, however.

The quantity of materials can be estimated using several different approaches. It is not certain, however, that the predicted amount of materials will be the total amount that can be recycled. Factors such as the methods of demolition, segregation, and collection will greatly influence the amount of material that can be recycled.

Accurately measuring the individual building components is also problematic. Some materials are not readily available for measurement, or are difficult to measure, particularly if the building is in use. Often, the ceilings, walls, or floors will have to be opened to identify types and amounts of materials. In most cases, this should be a minor difficulty since the part of the building in question has already been identified for renovation and can be deconstructed to determine these amounts. If physical inspection is impractical, then the next best source of information may be the original blueprints, or "as-built" drawings for the building.

1.2 Quantifying From the Demolition Specification

A remodeling project is awarded to a contractor through a bid process. Included in this solicitation for bid are specifications and drawings for completion of the work. All demolition work to be done as part of the remodel will need to conform to the specifications and contract drawings. While it will not give you specific quantities of materials, the demolition specification may provide some valuable information on the salvage and recycling of identified materials.

Often specifications will include clauses requiring the salvage or recycling of materials.
This method will only provide a qualitative description of materials to recycle. One must refer to the drawings for quantities.

1.3 Quantifying From Drawings

Most renovation or remodeling projects will have blueprints with revisions and notes indicating what changes are required for the project. The demolition phase of the work will be described in separate

15 October 2003

drawings. Based on the drawings included as part of the bid solicitation, the contractor develops a cost for doing the job. R.S. Means' Building Construction Cost Data and Facilities Maintenance and Repair Data provide some cost data for selective demolition and removal of building components. The US Army Job Order Contract (PDS99) Unit Price Book also provides a demolition cost for removing mechanical and electrical equipment, framing members, finishes, and other building materials and components. These references provide typical unit cost and production rates (e.g., linear feet of stud wall removed per hour). These factors can be applied to the specific materials and dimensions found in the building to be remodeled.

A set of drawings usually includes site plans, floor plans, elevations, and details along with schedules and plans for HVAC and plumbing for both the demolition and the new construction. To determine the demolition and removal of the existing building materials, you will need to look at all of the drawings that reference demolition. The demolition plans will indicate what tasks need to be done. These tasks are outlined in detail in numbered notes on the blueprints. For example, a note may read:

$$
\text { "Remove } 10 \text { ' tall wood stud and GWB as indicated." }
$$

First, you want to find all places on the drawing which reference that note number. Next, using an architectural or engineering scale, total up the quantities of materials. This may be a two-step process. In the above example, the total linear feet (ft) and square foot $\left(\mathrm{ft}^{2}\right)$ of wall is calculated. Once the quantity of each material class has been estimated, the next step is to transform this information into either weight or volume estimates. Some references are available that may assist in specifically determining the quantity of each material. The American Society of Civil Engineer's (ASCE's) Minimum Design Loads for Buildings and Other Structures (ASCE 7-95), for example, lists the minimum design dead loads for different building components and systems. Another source for dead loads and system weights for various building assemblies is R.S. Means Assemblies Cost Data.

Example: According to the ASCE $7-95$, frame partitions with $2 \times 4-\mathrm{ft}$ wood studs and $1 / 2$-inch drywall on each side have a minimum design dead load of $8 \mathrm{lb} / \mathrm{ft}^{2}$. Using this measurement, 44 ft of $10-\mathrm{ft}$ tall wood stud and gypsum wallboard (GWB or drywall) partition, for example, one would calculate the quantity of demolition waste as follows:

$$
\left(440 \mathrm{ft}^{2} \times 8 \mathrm{lb} / \mathrm{tt}^{2}\right) /(2000 \mathrm{lb} / \text { ton })=1.76 \text { tons of waste }
$$

The materials are combined here to determine the quantity of waste. If no recycling will take place, then total tons of waste will give an estimate of the quantity of waste going to a landfill. For hauling purposes, this weight of materials may need to be converted to volume. Table 1-1 lists some typical volume-weight conversions for wood, cardboard, drywall, and mixed waste.

Table 1-1. Weight-Volume Conversions for Common Remodeling Waste Materials [Yost 1997].

Material	$\mathbf{l b} / \mathbf{\mathbf { y d } ^ { \mathbf { 3 } }}$	$\mathbf{y d}^{\mathbf{3}} / \mathbf{\text { ton }}$
Wood	300	6.7
Cardboard	$30-100$	$20-50$
Drywall	400	5
Rubble	1400	1.4
Mixed waste	350	5.7

If the materials will be separated for the purpose of recycling, however, then "tons of waste" is too broad and does not give an accurate assessment of recyclable materials. The next step is to estimate the materials that make up that wall: 2×4 - ft wood studs ($10-\mathrm{ft}$ tall), $1 / 2$-inch thick drywall (two sides). GWB, if clean, can be recycled in some markets. In a remodeling project, however, the chances of the drywall
being clean without finishes such as paint or wallpaper, is highly unlikely. The only component of this wall partition that has a potential for recycling is the $10-\mathrm{ft}$ long, $2 \times 4-\mathrm{ft}$ wood studs. For salvage or recycling, the number of studs as well as the board feet (bf) ${ }^{1}$ of lumber can be quickly calculated.

1.4 Quantifying From Building Survey

Some drawings are more inclusive than others, so it is important to read the specification and bid solicitation carefully, and visit the job site in person to survey the building. Building surveys address construction type and materials, configuration of the major building systems, and descriptions of materials and components necessary to develop a reasonable take-off of materials' quantities. Whenever feasible, a survey of the actual building should be done to verify the information on the drawings.

The drawings will not include detailed information on the condition of the materials present. Exact finishes on the floors and walls are typically not indicated on the drawings. It may state that exterior wood siding shall be removed, but the condition of that siding is not known. The condition of the siding and type of wood will determine whether this material is salvageable for recycling or must be disposed of as solid waste.

[^0]
2.0 Fort Bragg Barracks to Office Conversion

The first building selected for study at Fort Bragg is a multi-wing, 3 story building that was built early in the 20th century. It has served many purposes over its lifetime, mostly barracks and office space. The remodeling project involves refurbishing and partial reconfiguration of the interior. The exterior, all structural elements, and some interior partitions will remain. The next several photographs (Figures 2-1 through 2-10) show the major features of the building and much of the interior that will be removed.

One-third of the building (one "wing") has already been remodeled, and is not addressed here. The data presented in Table 2-1, and following tables, reflect the remodeling of two wings. Therefore, the calculated material quantities could be divided by two to get an average "per wing" total.

Figure 2-1. Front entrance, multi-wing 3-story building at Fort Bragg.

Figure 2-2. Front facade, selected building at Fort Bragg.

Figure 2-3. Side of selected building at Fort Bragg.

Figure 2-4. Rear view of selected building at Fort Bragg.

Figure 2-5. Room inside selected building at Fort Bragg.

Figure 2-6. Stairs inside selected building at Fort Bragg.

Figure 2-7. Corridor inside selected building at Fort Bragg.

Figure 2-8. Window inside selected building.

Figure 2-9. Basement of selected building at Fort Bragg.

Figure 2-10. Latrine in selected building at Fort Bragg.

These numbered notes in the table below are from the renovation drawings of an old barracks at Fort Bragg. These include quantities for Wing "B" and Wing " C ". Wing " A " was previously remodeled. The text and figures in RED (not in all caps and not in italics) indicate calculations derived from the demolition instruction. The text in BLUE (italics) reflects items to be removed as a unit rather than pounds or feet of material.

Table 2-1. Basement demolition plan.

DEMOLITION NOTES	Ib	bf	yd^{3}
1. REMOVE 8'-8" TALL WOOD STUD AND PLYWOOD/PANELING WALL AS INDICATED.			
Stud wall $=194 \mathrm{ft}(.75+1)=147 \mathrm{studs}(5.33 \mathrm{bf} / \mathrm{stud})$		784	
$1681 \mathrm{ft}^{2}=\left(2 \times 4\right.$ wood stud, plywood, two sides $\left.=7 \mathrm{lb} / \mathrm{ft}^{2}\right)=11,770 \mathrm{lb}$	11770		
2. REMOVE HOLLOW METAL DOOR, DOOR FRAME, AND ASSOCIATED FINISH HARDWARE.			
(1) Single door 32" $\left(7^{\prime}\right)=18.67 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{ft}^{2}\right)=121.3 \mathrm{lb}$	121		
(3) Single door $36{ }^{\prime \prime}=21 \mathrm{ft}^{2}(6.5)=136.5 \mathrm{lb}(3)$	410		
(1) Double door 60" $\left(7^{\prime}\right)=35 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{t}^{2}\right)=228$	228		
(1) Double door 64" $\left(7^{\prime}\right)=37.33 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{tt}^{2}\right)=242$	242		
(8) door hardware			
3. REMOVE VAULT DOOR, FRAME AND ASSOICATED HARDWARE.			
Single vault door 42" (1) = $24.5 \mathrm{ft}^{2}\left(9 \mathrm{lb} / \mathrm{ft}^{2}\right)$	221		
Frame $=17.5 \mathrm{ft}(1.4 \mathrm{ft} / \mathrm{tt})$	25		
(1) door hardware			
4. REMOVE WOOD DOOR, WOOD FRAME AND ASSOCIATED FINISH HARDWARE.			
(1) Single door $34^{\prime \prime}\left(7^{\prime}\right)=19.83 \mathrm{ft}^{2}\left(5 \mathrm{lb} / \mathrm{ft}^{2}\right)=99 \mathrm{lb}$	99		
(2) Single door $36{ }^{\prime \prime}\left(7^{\prime}\right)=21 \mathrm{ft}^{2}(5) 105 \mathrm{lb}(2)=210 \mathrm{lb}$	210		
(1) Double door 58' 7^{\prime}) $=33.83 \mathrm{ft}^{2}(5)=169 \mathrm{lb}$	169		
Wood frame: $78 \mathrm{ft}\left(1 / 4^{\prime \prime}\right.$ thick)(4" wide) $=78(.083)=6.5 \mathrm{bf}$		6.5	
$78 \mathrm{ft}(0.25 \mathrm{lb} / \mathrm{tt})=19.5$	19.5		
(5) door hardware			
5. REMOVE 8'-8" TALL WOOD STUD AND GWB WALL AS INDICATED.			
Stud wall $=21.5 \mathrm{ft}(.75+1)=17$ studs ($5.77 \mathrm{bf} / \mathrm{ft}{ }^{2}$) $=98 \mathrm{bf}$		98	
Wood studs with $1 / 2 \mathrm{gyp}$ each side $=186 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{t}^{2}\right)$	1488		
6. REMOVE PANELING AND FURRING AS INDICATED.			
Wing C: $815 \mathrm{ft}^{2}$ wall ($0.4 \mathrm{lb} / \mathrm{ft}^{2}$)	326		
7. REMOVE STEEL STAIR NOSINGS.			
102 ft (3 stair wells, 34 stairs, 3' wide)	102		
8. REMOVE WOODEN STEPS, RAILS, PLYWOOD WALLS AND ROOF COMPLETE.			
8 steps 4'-10' wide, located in a $6^{\prime} \times 66^{\prime}$ appendage			
9. REMOVE LOUVER AND FRAME COMPLETE.			
Wing B: (2) $14^{\prime} \times 8^{\prime}-8$ " wing C: (1) $14^{\prime} \times 8^{\prime}-8$ ", (1) $11^{\prime} \times 8^{\prime}-8$ " $=216.66 \mathrm{ft}^{2}(1.16$ $\mathrm{lb} / \mathrm{ft}^{2}$)	251		
10. REMOVE ACOUSTICAL CEILING SYSTEM COMPLETE.			
$18^{\prime} \times 32^{\prime}=576 \mathrm{ft}^{2}$ ceiling $\left(0.8 \mathrm{lb} / \mathrm{ft}^{2}\right)=460.8 \mathrm{lb}$	461		

DEMOLITION NOTES	Ib	bf	yd^{3}
11. REMOVE STEEL BARE GRILLE AND FRAME AT BASEMENT WINDOWS.			
Typical of (33) windows 3'-3" $\times 2-6$ " (approx.) 12 ft of trim per window			
12. REMOVE STEEL DOOR, FRAME AND ASSOCIATED HARDWARE.			
5' Double door in stairwell $=35 \mathrm{ft}^{2}(6.5 \mathrm{lb} / \mathrm{ft})$	228		
Frame $=19 \mathrm{ft}(1.4 \mathrm{lb} / \mathrm{ft})$	26.6		
(2) door hardware			
13. REMOVE CHAIN LINK FENCE.			
($8^{\prime}-8$ " tall) $36.5 \mathrm{ft}=316.3 \mathrm{ft}^{2}\left(.696 \mathrm{lb} / \mathrm{ft}^{2}\right)=220 \mathrm{lb}$	220		
(7) corner/end posts (2-1/2" O.D.); $60 \mathrm{ft}(3.315 \mathrm{lb} / \mathrm{ft})$	199		
(4) support/middle posts (1-5/8" O.D.); 35 ft ($1.431 \mathrm{lb} / \mathrm{ft}$)	50		
14. REMOVE 7'-3" CMU WALL TO UNDERSIDE OF CONCRETE BEAM (6")			
14 ft or $101.5 \mathrm{ft}^{2}\left(35 \mathrm{lb} / \mathrm{ft}^{2}\right)$	3553		
15. SAW CUT CONCRETE FLOOR ABOVE AS INDICATED ON SHEET S1.			
Slab thickness 4" in mechanical rooms (14.5' x 17.5') $=254 \mathrm{ft}^{2}\left(.012 \mathrm{yd}^{3} / \mathrm{ft}^{2}\right)$ $=3 \mathrm{yd}^{3}$			3
Stone concrete, per inch $=12 \mathrm{lb} / \mathrm{ft}^{2}$ per inch: $\left(48 \mathrm{lb} / \mathrm{ft}^{2}\right)=12192 \mathrm{lb}$	12192		
16. REMOVE WINDOW AND FRAME COMPLETE.			
(5) windows $3^{\prime}-3$ " $\times 2-6$ " $=8 \mathrm{ft}^{2}$ per window $=40 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{ft}^{2}\right)$	320		
(approx.) 12 ft of trim per window ($0.25 \mathrm{lb} / \mathrm{ft}^{2}$)	3		
17. REMOVE CHAIN LINK DOOR AND ALL ASSOCIATED HARDWARE.			
(1) 3.5 ' door and (1) 4^{\prime} door $=65 \mathrm{ft}^{2}\left(.696 \mathrm{lb} / \mathrm{ft}^{2}\right)+(4)$ posts ($2.315 \mathrm{lb} / \mathrm{ft}$)	126		
18. REMOVE HOLLOW METAL DUTCH DOOR, HOLLOW METAL FRAME AND ALL ASSOCIATED HARDWARE.			
(1) 2.5 ' door $=17.5 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{tt}^{2}\right)$	114		
17.5 ft of frame ($1.4 \mathrm{lb} / \mathrm{ft}^{2}$)	25		
(1) door hardware			
19. REMOVE GWB FURRING.			
$130 \mathrm{ft}^{2}$ of wall. Furring strips $1^{\prime \prime} \times 3^{\prime \prime}=0.75 \mathrm{ft} / \mathrm{ft}^{2}=173.3 \mathrm{ft}(.25 \mathrm{lb} / \mathrm{ft})$	43		
$0.1875 \mathrm{bf} / \mathrm{ft} \mathrm{t}^{2}$ OR $0.25 \mathrm{bf} / \mathrm{ft}=25 \mathrm{bf}$		25	
20. REMOVE PLYWOOD COMPLETE.			
$11.5 \mathrm{'}^{\mathrm{\prime}} 8^{\prime}-8$ " $=100 \mathrm{ft}^{2}$ @ $1.5 \mathrm{lb} / \mathrm{ft}^{2}=150 \mathrm{lb}$ of $1 / 2^{" ~}$ plywood or 0.5 bf per $\mathrm{ft}^{2}=50$ bf	150	50	
21. REMOVE PLYWOOD RACK COMPLETE.			
40 ft or (2) $16{ }^{\prime} \times 4^{\prime}=(2) 64=128 \mathrm{ft}^{2}\left(0.5 \mathrm{bf} / \mathrm{ft}^{2}\right) ; 128 \mathrm{ft}^{2}\left(1.5 \mathrm{lb} / \mathrm{ft}^{2}\right)=192 \mathrm{lb}$	192	64	
GENERAL NOTES:			
1. SEE SHEETS R25-29 FOR ABATEMENT PLANS FOR FLOORS, WALLS, AND CEILINGS.			
2. REMOVE ALL BLINDS, DRAPES, WINDOW COVERINGS, AND ASSOCIATED HARDWARE COMPLETE AT ALL WINDOWS.			
3. COORDINATE DEMOLITION WORK WITH ABATEMENT PLANS, SHEETS R1-R5, FOR SEQUENCE OF CONSTRUCTION FOR ABATEMENT OF FLOORS, WALLS, AND CEILINGS.			
4. FIELD-VERIFY ALL CONDITIONS PRIOR TO BEGINNING			

PWTB 200-1-24
15 October 2003

DEMOLITION NOTES	lb	bf	$\mathbf{y d}^{\mathbf{3}}$
DEMOLITION WORK. DOCUMENTS WERE BASED ON CONDITION OF BUILDING AT TIME OF SURVEY.			

Table 2-2. First floor demolition plan

DEMOLITION NOTES: FIRST FLOOR DEMOLITION PLAN	Ib	bf	yd^{3}
1. REMOVE 8" CMU WALL AS INDICATED TO RECEIVE NEW DOOR.			
Door openings (7'): (3) $3^{\prime}-00^{\prime \prime}$, (2) $3^{\prime}-2{ }^{\prime \prime}$, (1) $3^{\prime}-44^{\prime \prime}=130 \mathrm{ft}^{2}\left(35 \mathrm{lb} / \mathrm{ft}^{2}\right)$	4550		
2. REMOVE PLYWOOD SHELF, SHUTTER, AND ASSOCIATED HARDWARE.			
(2) $1.5^{\prime} \times 4^{\prime}$ shelf/ shutter $=12 \mathrm{ft}^{2} @ 1.5 \mathrm{lb} / \mathrm{ft}^{2}=18 \mathrm{lb}$ of $1 / 2^{\prime \prime}$ plywood or 0.5 bf/ft ${ }^{2}$	18	6	
3. REMOVE ACOUSTICAL CEILING SYSTEM COMPLETE.			
Total $=9,383 \mathrm{ft}^{2} \times 0.8 \mathrm{lb} / \mathrm{ft}^{2}=7506 \mathrm{lb}=2.75$ tons	7506		
4. REMOVE WOOD DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE.			
(26) single door (3^{\prime}) $=546 \mathrm{ft}^{2}\left(5 \mathrm{lb} / \mathrm{ft}^{2}\right)$	2730		
(2) double exterior (5.5') $=77 \mathrm{ft}^{2}\left(9 \mathrm{lb} / \mathrm{ft}^{2}\right)$	693		
Metal frame $=522 \mathrm{ft}(1.4 \mathrm{lb} / \mathrm{ft})$	731		
5. REMOVE HOLLOW METAL DOOR, HOLLOW METAL FRAME AND ASSOCIATED FINISH HARDWARE.			
(17) single 3' interior doors $=357 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{ft}^{2}\right)$	2320		
(7) double 5'-6' interior doors $=270 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1755		
Metal frame $=458 \mathrm{ft}\left(1.4 \mathrm{lb} / \mathrm{ft}^{2}\right)$	641		
(31) door hardware			
6. REMOVE STEEL STAIR NOSINGS.			
(2) interior stairwells with 20 stairs $=40$ stairs (3^{\prime}) $=120 \mathrm{ft}$	120		
7. REMOVE 10'-0" HIGH WOOD STUD AND GWB AS INDICATED.			
Wood studs $=48.5 \mathrm{ft}(.75)+1=38$ studs ($6.667 \mathrm{bf} / \mathrm{stud}$) $=253 \mathrm{bf}$		253	
4.5 ft GWB one side $=45 \mathrm{ft}^{2}\left(6 \mathrm{lb} / \mathrm{ft}^{2}\right)=270 \mathrm{lb}$	270		
44 ft interior partition wall GWB both sides $=440\left(8 \mathrm{lb} / \mathrm{t}^{2}\right)=3520 \mathrm{lb}$	3520		
8. REMOVE TOILET PARTITION.			
(2) partitions 3.5' long, approx. 7^{\prime} high $=49 \mathrm{ft}^{2}\left(3.25 \mathrm{lb} / \mathrm{ft}^{2}\right)$	159		
9. REMOVE CERAMIC FLOOR AND SETTING BASE.			
1" mortar bed: $8.5^{\prime} \times 10{ }^{\prime}=85 \mathrm{ft}^{2}\left(23 \mathrm{lb} / \mathrm{t}^{2}\right)$	1955		
10. REMOVE PLUMBING FIXTURES; TOILET ACCESSORIES, INCLUDING: MIRRORS, MEDICINE CABINETS, SOAP DISPENSERS AND PAPER TOWEL DISPENSERS. REFER TO PLUMBING DEMOLITION DRAWING P-4 FOR ADDITIONAL INFORMATION.			
(2) toilets			
(1) urinal			
(2) sinks			
11. REMOVE PLYWOOD ARCH COMPLETE.			
Arch plywood 1/2" thick $=0.5 \mathrm{bf} / \mathrm{ft}^{2}\left(10 \mathrm{ft}^{2}\right)$		5	
Corridor arch 5' wide ($7 \mathrm{lb} / \mathrm{ft}^{2}$) $\left(10 \mathrm{ft}^{2}\right)=70 \mathrm{lb}$	70		
12. REMOVE LOUVER COMPLETE.			
(2) louvers to exist duct chase ($2^{\prime} \mathrm{x}$? $)=8 \mathrm{ft}^{2}\left(1.16 \mathrm{lb} / \mathrm{t}^{2}\right)$	9		
13. REMOVE PLYWOOD INFILL COMPLETE.			
Window 3.5' x 6' $=21 \mathrm{ft}^{2}\left(1.5 \mathrm{lb} / \mathrm{tt}^{2}\right)=32 \mathrm{lb} ; 21 \mathrm{ft}^{2}\left(0.5 \mathrm{bf} / \mathrm{ft}^{2}\right)$	32	10.5	

DEMOLITION NOTES: FIRST FLOOR DEMOLITION PLAN	Ib	bf	yd^{3}
14. SAW CUT CONCRETE FLOOR SLAB, SEE MECH DRAWINGS.			
	4800		1.2
15. REMOVE GWB CEILING COMPLETE.			
$\left(85 \mathrm{ft}^{2}\right)\left(2 \mathrm{lb} / \mathrm{t}^{2}\right)=170 \mathrm{lb}$	170		
16. REMOVE ELECTRIC WATER COOLER.			
(1) water cooler			
17. REMOVE WOOD STUD, PLYWOOD WALLS AND ROOF COMPLETE, AS WELL AS THE DOORS AND HARDWARE AS INDICATED.			
??? Exterior stairwell from basement $12 \mathrm{ft}(.75+1)=10$ studs (6.667 bf/stud) $=67$ bf		67	
Plywood $120 \mathrm{ft}^{2}\left(0.5 \mathrm{lb} / \mathrm{ft}^{2}\right)=60 \mathrm{bf}$		60	
Stud wall, plywood 2 sides $=7 \mathrm{lb} / \mathrm{ft}^{2}\left(120 \mathrm{ft}^{2}\right)=840 \mathrm{lb}$	840		
Roof $6^{\prime} \times 6^{\prime}$ (flat) $=36 \mathrm{ft}^{2}\left(6.5 \mathrm{lb} / \mathrm{ft}^{2}\right.$)	234		
18. REMOVE 12 " X 12" ACT GLUED TO UNDERSIDE OF CONCRETE DECK.			
Corridor from wing b to wing c: $\left(5.75{ }^{\prime} \times 130 '\right)=748 \mathrm{ft}^{2}(1 \mathrm{lb} / \mathrm{ft} 2)=748 \mathrm{lb}$	748		
19. REMOVE WALL PANELING COMPLETE.			
$23 \mathrm{ft} \times 10^{\prime}=230 \mathrm{ft}^{2}$			
$1 / 8^{\prime \prime}=0.44 \mathrm{lb} / \mathrm{ft}^{2}\left(230 \mathrm{ft}^{2}\right)=101 \mathrm{lb}$	101		
20. REMOVE MAIL BOXES COMPLETE.			
wood mailboxes located in (1.5' x 4' x tall) opening			
21. REMOVE 11'-0: TALL, 8" CMU WALL AS INDICATED.			
$18.5 \mathrm{ft}\left(10^{\prime}\right)=180 \mathrm{ft}^{2}\left(35 \mathrm{lb} / \mathrm{tt}^{2}\right)=6300 \mathrm{lb}=1.4$ tons	6300		
22. REMOVE PLYWOOD PANEL COMPLETE.			
(3) 4' panels $\times 4^{\prime}$? height $=48 \mathrm{ft}^{2}\left(1.5 \mathrm{lb} / \mathrm{ft}^{2}\right) ; 48 \mathrm{ft}^{2}\left(0.5 \mathrm{bf} / \mathrm{ft}^{2}\right)$	72	24	
23. REMOVE BULLETIN BOARD COMPLETE.			
(1) $24^{\prime \prime}$ long bulletin board $\times 4^{\prime}$ tall $=8 \mathrm{ft}^{2}\left(1.5 \mathrm{lb} / \mathrm{ft}^{2}\right)$	12		
GENERAL NOTES:			
1. ROOM NUMBERS 118A, 127, 128, 129, 130, AND 136A NOT USED ON THIS SHEET.			
2. MASONRY OPENING (MO) REFERS TO FLOOR RENOVATION PLAN FOR ADDITIONAL INFORMATION.			
3. COORDINATE DEMOLITION WORK WITH ABATEMENT PLANS, SHEETS R1-55, FOR SEQUENCE OF CONSTRUCTION FOR ABATEMENT OF FLOORS, WALLS, AND CEILINGS.			
4. REMOVE ALL BLINDS, DRAPES, WINDOW COVERINGS, AND ASSOCIATED HARDWARE COMPLETE AT ALL WINDOWS.			
5. FIELD-VERIFY ALL CONDITIONS PRIOR TO BEGINNING DEMOLITION WORK. DOCUMENTS WERE BASED ON CONDITION OF BUILDING AT TIME OF ORIGINAL SURVEY.			

Table 2-3. Second floor demolition plan

DEMOLITION NOTES: SECOND FLOOR DEMOLITION PLAN	lb	bf	yd^{3}
1. REMOVE 11'-10" TALL MAXIMUM, 8" CMU WALL AS INDICATED.			
(2) 96 ft in bathrooms $=192 \mathrm{ft}(11.83)=2271 \mathrm{ft}^{2}(46 \mathrm{lb} / \mathrm{ft})$	104466		
2. REMOVE WINDOW AND WINDOW FRAME COMPLETE.			
(6) $6.5^{\prime} \times 5^{\prime}=195 \mathrm{ft}^{2}(2) 3^{\prime} \times 2^{\prime}=12 \mathrm{ft}^{2}$	1656		
3. REMOVE ACOUSTICAL CEILING TILE AND TRACK.	25,482		
4. REMOVE WOOD DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE.			
(4) $28^{\prime \prime}$ (2) 30 " (32) $36{ }^{\prime \prime}$ all 7 ' $=65.3+35+672=772.3 \mathrm{ft}^{2}$ DOOR	3,862		
$65.3+33+544=642.3 \mathrm{ft} \mathrm{FRAME}$	899		
5. REMOVE HOLLOW METAL DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE.			
(4) $3^{\prime} \times 7^{\prime}=84 \mathrm{ft}^{2}$ DOOR (6.5) $=546 \mathrm{lb}$	546		
68 ft FRAME (1.4) $=95$	95		
(4) door hardware			
6. REMOVE STEEL STAIR NOSINGS.			
(2) interior stairwells with 20 stairs $=40$ stairs $\left(3^{\prime}\right)=120 \mathrm{ft} 4^{\prime \prime}$ wide	120		
7. REMOVE ALL EXISTING ROOFING MATERIALS, JOISTS, AND ANY BRIDGING COMPLETE.			
See 17. On first floor demolition plan			
8. REMOVE SHOWER CURB.			
$13 \mathrm{ft} 8^{\prime \prime}$ wide 4 " thick ($29 \mathrm{lb} / \mathrm{ft}$) (. $008 \mathrm{yd}^{3} / \mathrm{ft}$)	377		0.1
9. REMOVE PLUMBING FIXTURES; TOILET ACCESSORIES, INCLUDING: MIRRORS, MEDICINE CABINETS, SOAP DISPENSERS, AND PAPER TOWEL DISPENSERS. REFER TO PLUMBING DEMOLITION DRAWING P-4 FOR ADDITIONAL INFORMATION.			
(17) toilets			
(6) urinals			
(21) sinks			
(14) shower heads			
10. REMOVE TOILET AND SHOWER PARTITIONS.			
$110 \mathrm{ft} \times 5 \mathrm{t}$ tall $=550 \mathrm{ft}^{2}\left(3.25 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1788		
11. REMOVE CERAMIC FLOOR TILE AND SETTING BASE.	19,936		
12. REMOVE LOUVER COMPLETE.			
13. REMOVE ELECTRIC WATER COOLER.			
(2) drinking fountains			
14. REMOVE WINDOW \& WINDOW FRAME COMPLETE AND PORTION OF THE EXISTING WALL BELOW THE WINDOW FOR NEW DOOR INSTALLATION.			
$3^{\prime}-4{ }^{\prime \prime}$ wide $\times 5^{\prime} ?=16.7 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{ft}^{2}\right)$	133		
$3^{\prime}-4^{\prime \prime} \times 3^{\prime}=10 \mathrm{ft}^{2}$ WALL ($46 \mathrm{lb} / \mathrm{ft}^{2}$)	460		
15. REMOVE EXISTING BRICK AND BLOCK INFILL COMPLETE WHERE ORIGINAL DOOR WAS INSTALLED FOR NEW DOOR			

DEMOLITION NOTES: SECOND FLOOR DEMOLITION PLAN	Ib	bf	yd^{3}
INSTALLATION.			
(2) $\left(3^{\prime}-4{ }^{\prime \prime} \times 7^{\prime}\right)=47 \mathrm{ft}^{2}\left(47 \mathrm{lb} / \mathrm{ft}^{2}\right)$	2209		
16. REMOVE 6" CMU AS INDICATED TO INSTALL ACCESS PANEL.			
(2) $1.5^{\prime} \times 4^{\prime} ?=12 \mathrm{ft}^{2}\left(35 \mathrm{lb} / \mathrm{tt}^{2}\right)$	420		
17. REMOVE PANELING COMPLETE.			
$18+15.5+18+12.5=64 \mathrm{ft}\left(10^{\prime}\right)=640 \mathrm{ft}^{2}$ paneling $1 / 4^{\prime \prime}$ thick?	512		
18. REMOVE BULLETIN BOARD COMPLETE.			
$3^{\prime} \times 4^{\prime}=12 \mathrm{ft}^{2}\left(2.4 \mathrm{lb} / \mathrm{t}^{2}\right)$	29		
GENERAL NOTES:			
1. ROOM NUMBERS 215, 216, 241, AND 242 ARE NOT USED ON THIS SHEET.			
2. MASONRY OPENING (MO) REFERS TO FLOOR RENOVATION PLAN FOR ADDITIONAL INFORMATION.			
3. COORDINATE DEMOLITION WORK WITH ABATEMENT PLANS, SHEETS R1-R5, FOR SEQUENCE OF CONSTRUCTION FOR ABATEMENT OF FLOOR, WALLS, AND CEILINGS.			
4. REMOVE ALL BLINDS, DRAPES, WINDOW COVERINGS, AND ASSOCIATED HARDWARE COMPLETE AT ALL WINDOWS.			
5. FIELD-VERIFY ALL CONDITIONS PRIOR TO BEGINNING DEMOLITION WORK. DOCUMENTS WERE BASED ON CONDITION OF BUILDING AT THE TIME OF ORIGINAL SURVEY.			

Table 2-4. Third floor demolition plan

DEMOLITION NOTES: THIRD FLOOR DEMOLITION PLAN	lb	bf	yd^{3}
1. REMOVE 11'-10" TALL MAXIMUM, 8" CMU WALL AS INDICATED.			
(2) 96 ft in bathrooms $=192 \mathrm{ft}(46 \mathrm{lb} / \mathrm{ft})$	8832		
2. REMOVE WINDOW AND WINDOW FRAME COMPLETE.			
(6) $6.5^{\prime} \times 5^{\prime}(2) 3^{\prime} \times 2^{\prime}$			
3. REMOVE BATT INSULATION, ACOUSTICAL CEILING TILE, AND TRACK.			
$8594 \mathrm{ft}^{2}\left(2.8 \mathrm{lb} / \mathrm{tt}^{2}\right)$	24,063		
$8594 \mathrm{ft}^{2}$ Batt Insulation 6" thick (.6 lb/ft${ }^{2}$)	5,156		
4. REMOVE WOOD DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE.	4085		
Metal frame 16.3 (5) + 17 (35) $=82+595=677 \mathrm{ft}$	948		
(40) door hardware			
5. REMOVE HOLLOW METAL DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE.			
(2) $36{ }^{\prime \prime} \times 7^{\prime}=42 \mathrm{ft}^{2}$ DOOR	273		
$17+17=34 \mathrm{ft} \mathrm{FRAME}$	48		
(2) door hardware			
6. REMOVE STEEL STAIR NOSINGS.			
(20) stairs (3^{\prime}) $=60 \mathrm{ft} 4^{\prime \prime}$ wide	60		
7. REMOVE TOILET AND SHOWER PARTITIONS.			
$110 \mathrm{ft} \times 5^{\prime}$ tall $=550 \mathrm{ft}^{2}$	1788		
8. REMOVE SHOWER CURB.			
$13 \mathrm{ft} 8^{\prime \prime}$ wide $4^{\prime \prime}$ tall	377		0.1
9. REMOVE PLUMBING FIXTURES, TOILET ACCESSORIES, INCLUDING: MIRRORS, MEDICINE CABINETS, SOAP DISPENSERS, AND PAPER TOWER DISPENSERS. REFER TO PLUMBING DEMOLITION DRAWING P-4 FOR ADDITIONAL INFORMATION.			
(17) toilets			
(6) urinals			
(21) sinks			
(14) shower heads			
Accessories			
10. REMOVE CERAMIC FLOOR TILE AND SETTING BASE.	19,936		
11. NOT USED.			
12. REMOVE WINDOW \& WINDOW FRAME COMPLETE AND PORTION OF THE EXISTING WALL BELOW WINDOW FOR NEW DOOR INSTALLATION.			
$3^{\prime}-4{ }^{\prime \prime}$ wide $\times 5^{\prime}=16.7 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{ft}^{2}\right)$	133		
$3^{\prime}-4^{\prime \prime} \times 3^{\prime}=10 \mathrm{ft}^{2}$ WALL ($46 \mathrm{lb} / \mathrm{tt}^{2}$)	460		
13. REMOVE ELECTRIC WATER COOLER.			
(2) water coolers			
14. REMOVE EXISTING BRICK AND BLOCK INFILL COMPLETE ORIGINAL DOOR WAS INSTALLED FOR NEW DOOR INSTALLATION.			

DEMOLITION NOTES: THIRD FLOOR DEMOLITION PLAN	Ib	bf	yd^{3}
(2) ($\left.3^{\prime}-4^{\prime \prime} \times 7^{\prime}\right)=47 \mathrm{ft}^{2}\left(48 \mathrm{lb} / \mathrm{ft}^{2}\right)$	2256		
15. REMOVE HOLLOW METAL DOOR, HOLLOW METAL FRAME, AND ASSOCIATED FINISH HARDWARE, DOOR TO ATTIC.			
(2) $36^{\prime \prime} \times 7^{\prime}=42 \mathrm{ft}^{2}$ DOOR	273		
$17+17=34 \mathrm{ft} \mathrm{FRAME}$	48		
(2) door hardware			
16. REMOVE LOUVER COMPLETE.			
2' x ?			
17. SAW CUT CONCRETE SLAB BETWEEN THIRD FLOOR CEILING/ATTIC FLOOR. SEE MECH DRAWINGS.	1152		
GENERAL NOTES:			
1. ROOM NUMBERS $315,316,317,342,343$ AND 344 ARE NOT USED ON THIS SHEET.			
2. MASONRY OPENING (MO) REFERS TO FLOOR RENOVATION PLAN FOR ADDITIONAL INFORMATION.			
3. COORDINATE DEMOLITION WORK WITH ABATEMENT PLANS, SHEETS R1-R5, FOR SEQUENCE OF CONSTRUCTION FOR ABATEMENT OF FLOORS, WALLS, AND CEILINGS.			
4. REMOVE ALL BLINDS, DRAPES, WINDOW COVERINGS, AND ASSOCIATED HARDWARE COMPLETE AT ALL WINDOWS.			
5. FIELD-VERIFY ALL CONDITIONS PRIOR TO BEGINNING DEMOLITION WORK. DOCUMENTS WERE BASED ON CONDITION OF BUILDING AT TIME OF ORIGINAL SURVEY.			

Table 2-5. Basement demolition plan-HVAC

BASEMENT DEMOLITION PLAN - HVAC:	Ib	bf	yd^{3}
(2) WATER HEATERS			
(1) BOILER			
(1) 80 GALLON EXPANSION TANK			
(1) 40 GALLON EXPANSION TANK			
(1) SYSTEM PUMP			
(3) EXHAUST FAN			
(1) AIR COOLED WATER CHILLER (9' $\times 20^{\prime}=180 \mathrm{ft}^{2}$)			
(2) AIR HANDLING UNIT			
(1) UNDERGROUND FUEL TANK (8' $\times 20^{\prime}=160 \mathrm{ft}^{2}$)			
(1) ELECTRIC HEATER			
(2) FIRE DAMPER			
3/4" LTWS (TEMPERED WATER SUPPLY) $58 \mathrm{ft}(1.13 \mathrm{lb} / \mathrm{ft})$	66		
3/4" LTWR (TEMPERED WATER RETURN) 56 ft ($1.13 \mathrm{lb/} / \mathrm{ft}$)	63		
3/4" HWR (HOT WATER HEATING RETURN) UP $8 \mathrm{ft}(1.13 \mathrm{lb} / \mathrm{ft})$	9		
2" HW (HOT WATER HEATING SUPPLY) UP $8 \mathrm{ft}(1.75 \mathrm{lb} / \mathrm{ft})$	14		
2-1/2" DTWS (DRINKING WATER SUPPLY) $98 \mathrm{ft}(2.48 \mathrm{lb} / \mathrm{ft})$	243		
2-1/2" DTWR (DRINKING WATER RETURN) $189 \mathrm{ft}(2.48 \mathrm{lb} / \mathrm{ft})$	469		
3" HW (HOT WATER HEATING SUPPLY) $73 \mathrm{ft}(3.33 \mathrm{lb} / \mathrm{ft})$	243		
4" CWR (CONDENSER WATER RETURN) $65 \mathrm{ft}(5.38 \mathrm{lb} / \mathrm{ft})$	350		
4" CWS (CONDENSER WATER SUPPLY) 77 ft ($5.38 \mathrm{lb} / \mathrm{ft}$)	414		
4" $\varnothing 108 \mathrm{ft}(10.79 \mathrm{lb} / \mathrm{ft})$	1165		
6" $\varnothing 7 \mathrm{ft}$ (18.97 lb/ft)	133		
10" $\varnothing 9.25 \mathrm{ft}$ (40.48LB/tt)	374		
$14^{\prime \prime} \varnothing 12.5 \mathrm{ft}(54.75 \mathrm{lb} / \mathrm{tt})$	684		
18" $\varnothing 2 \mathrm{ft}$ (70.59 lb/ft)	141		
$60 \times 2444 \mathrm{ft}$	728		
$48 \times 1618 \mathrm{ft}$	229		
$30 \times 3297 \mathrm{ft}$	1192		
$40 \times 3014 \mathrm{ft}$	195		
$34 \times 3046 \mathrm{ft}$	584		

Table 2-6. First floor demolition plan - HVAC

FIRST FLOOR DEMOLITION PLAN - HVAC:	lb	$\mathbf{b f}$	$\mathbf{y d}^{3}$
$(15) T U\left(2^{\prime} X 4^{\prime}\right)$			
(1) T-THERMOSTAT			
(1) GRILLE BLW			
30×30 RA 2.5 ft	31		
$8 \times 69 \mathrm{ft}$	28		
$10 \times 630 \mathrm{ft}$	103		
$10 \times 86.5 \mathrm{ft}$	25		
$10 \times 1029 \mathrm{ft}$	122		
$12 \times 616 \mathrm{ft}$	61		
$12 \times 10122 \mathrm{ft}$	559		
$14 \times 612.5 \mathrm{ft}$	53		
$14 \times 825 \mathrm{ft}$	115		
$16 \times 815.5 \mathrm{ft}$	92		
$16 \times 10125 \mathrm{ft}$	669		
$24 \times 1616 \mathrm{ft}$	129		
$42 \times 1418 \mathrm{ft}$	201		

Table 2-7. Second floor demolition plan - HVAC

SECOND FLOOR DEMOLITION PLAN - HVAC:	lb	bf	$\mathbf{y d}^{3}$
(10) TU			
$(7) T(T H E R M O S T A T)$			
$(1) M$			
$8 \times 843 \mathrm{ft}$	147		
$10 \times 835 \mathrm{ft}$	135		
$12 \times 616.5 \mathrm{ft}$	63		
$1 \times 887 \mathrm{ft}$	365		
$12 \times 1079 \mathrm{ft}$	362		
$12 \times 1219 \mathrm{ft}$	95		
$14 \times 1017 \mathrm{ft}$	85		
$14 \times 1228 \mathrm{ft}$	150		
$16 \times 818.5 \mathrm{ft}$	92		
$16 \times 10109 \mathrm{ft}$	583		
$16 \times 1226 \mathrm{ft}$	150		
$18 \times 1021 \mathrm{ft}$	121		
$24 \times 1632 \mathrm{ft}$	258		
ELECTRICAL CONDUIT 18 ft			
$(2) E L E C T R I C A L$ BOXES			

Table 2-8. Third floor demolition plan-HVAC

THIRD FLOOR DEMOLITION PLAN - HVAC:	$\mathbf{l b}$	$\mathbf{b f}$	$\mathbf{y d}^{\mathbf{3}}$
(11) TU			
$(6) T-T H E R M O S T A T$			
$(1) M$			
$8 \times 645 \mathrm{ft}$	137		
$10 \times 874 \mathrm{ft}$	282		
$12 \times 675 \mathrm{ft}$	286		
$12 \times 837 \mathrm{ft}$	155		
$12 \times 1081 \mathrm{ft}$	371		
$14 \times 1019 \mathrm{ft}$	95		
$14 \times 1231.5 \mathrm{ft}$	169		
$16 \times 837.5 \mathrm{ft}$	186		
$16 \times 1081 \mathrm{ft}$	434		
$16 \times 1226 \mathrm{ft}$	150		
$18 \times 1021 \mathrm{ft}$	121		
$24 \times 1632 \mathrm{ft}$	258		
ELECTRICAL CONDUIT 18 ft			
$(2) E L E C T R I C A L$ BOXES			

Table 2-9. Attic demolition plan - HVAC

ATTIC DEMOLITION PLAN - HVAC:	lb	bf	yd3
$6 " \varnothing 52 \mathrm{ft}(18.97 \mathrm{lb} / \mathrm{ft})$	986		
$16^{\prime \prime} \varnothing 6 \mathrm{ft}(62.58 \mathrm{lb} / \mathrm{ft})$	375		
$12 \times 834 \mathrm{ft}$	143		
$12 \times 1235 \mathrm{ft}$	174		
$18 \times 1814.5 \mathrm{ft}$	106		
$18 \times 209 \mathrm{ft}$	70		
$24 \times 1427.5 \mathrm{ft}$	211		
$24 \times 222.5 \mathrm{ft}$	24		
$26 \times 306 \mathrm{ft}$	68		

Table 2-10. Basement demolition plan - Plumbing
$\left.\begin{array}{|l|r|r|r|}\hline \text { BASEMENT DEMOLITION PLAN - PLUMBING: } & \text { lb } & \text { bf } & \mathbf{y d}^{3} \\ \hline \text { CONTRACTOR IS RESPONSIBLE FOR REMOVING ALL } \\ \text { COMPONENTS OF THE EXISTING PLUMBING SYSTEM, INCLUDING } & & & \\ \text { ALL HOT WATER HEATERS, EXPANSION TANKS, SUPPLY PIPING, } \\ \text { RECIRCULATION PIPING, SANITARY PIPING, VENT PIPING, } \\ \text { FIXTURES, ETC. }\end{array}\right)$

Table 2-11. First floor demolition plan - plumbing

FIRST FLOOR DEMOLITION PLAN - PLUMBING:	Ib	bf	yd 3
3" SAN (SANITARY) $59 \mathrm{ft}(1.903 \mathrm{lb} / \mathrm{ft})$	112		
4" SAN (SANITARY) $128 \mathrm{ft}(2.782 \mathrm{lb} / \mathrm{ft})$	356		
3/4" HW (HOT WATER SUPPLY) $76 \mathrm{ft}(1.13 \mathrm{lb} / \mathrm{ft})$	86		
2" CW (COLD WATER SUPPLY) $44 \mathrm{ft}(1.75 \mathrm{lb} / \mathrm{ft})$	77		
1-1/2" HW (HOT WATER SUPPLY) $187 \mathrm{ft}(1.14 \mathrm{lb} / \mathrm{ft})$	213		
1" CW (COLD WATER SUPPLY) $93 \mathrm{ft}(0.655 \mathrm{lb} / \mathrm{ft})$	61		

Table 2-12. Second floor demolition plan - plumbing

SECOND FLOOR DEMOLITION PLAN - PLUMBING:	lb	bf	yd $^{\mathbf{3}}$
(10) FD - Floor Drains			
3" SAN (SANITARY) $18 \mathrm{ft}(1.903 \mathrm{lb} / \mathrm{ft})$	34		
4" SAN (SANITARY) $220 \mathrm{ft}(2.782 \mathrm{lb} / \mathrm{ft})$	612		
2" CW (COLD WATER SUPPLY) $70 \mathrm{ft}(1.75 \mathrm{lb} / \mathrm{ft})$	123		
3/4" HW (HOT WATER SUPPLY) $104 \mathrm{ft}(1.13 \mathrm{lb} / \mathrm{ft})$	118		
1" CW (COLD WATER) $103 \mathrm{ft}(0.655 \mathrm{lb} / \mathrm{ft})$	67		
1-1/2" HW/CW (HOT/COLD WATER RETURN) $132 \mathrm{ft}(1.14 \mathrm{lb} / \mathrm{ft})$	150		

Table 2-13. Third floor demolition plan - plumbing

THIRD FLOOR DEMOLITION PLAN - PLUMBING:	lb	$\mathbf{b f}^{\prime}$	yd 3
(10) FD - Floor Drains			
3" SAN (SANITARY) $18 \mathrm{ft}(1.903 \mathrm{lb} / \mathrm{ft})$	34		
4" SAN (SANITARY) $220 \mathrm{ft}(2.782 \mathrm{lb} / \mathrm{ft})$	612		
2" CW (COLD WATER) $70 \mathrm{ft}(1.75 \mathrm{lb} / \mathrm{ft})$	123		
3/4" HW (HOT WATER) $350 \mathrm{ft}(1.13 \mathrm{lb} / \mathrm{ft})$	396		
1" CW (COLD WATER) $103 \mathrm{ft}(0.655 \mathrm{lb} / \mathrm{ft})$	67		
1-1/2" HW/CW (HOT/COLD WATER RETURN) $132 \mathrm{ft}(1.14 \mathrm{lb} / \mathrm{ft})$	150		

Table 2-14. Basement floor lighting and power demolition plan

BASEMENT FLOOR LIGHTING \& POWER DEMOLITION PLAN:	lb	bf	yd^{3}
(25) Fluorescent lighting fixtures (1x8)			
(12) Fluorescent lighting fixtures (2x4)			
(11) Fluorescent lighting fixtures (1x4)			
(41) Duplex receptacle			
(30) Ceiling mounted duplex receptacle			
(16) Ceiling mounted down lighting fixture			
(24) Switches			
(3) antenna outlets			
(2) HD			
(1) Fire alarm pull			
1. DISCONNECT AND REMOVE ELECTRICAL CONNECTION, DISCONNECT SWITCH AND/OR STARTER, AND ALL ASSOCIATED CONDUIT AND WIRING BACK TO PANEL FROM WHICH IT IS SERVED.			
(6) motors and (1) switch to be removed from AHU and BOILER			
2. DISCONNECT AND REMOVE EXISTING PANEL AND ASSOCIATED COMPONENTS. DISCONNECT AND REMOVE FEEDER CONDUIT AND WIRING SERVING THIS PANEL. COORDINATE REMOVAL WITH DEMOLITION POWER RISER DIAGRAM, SHEET E19.			
(2) panels 3.5' wide			
3. DISCONNECT AND REMOVE EXISTING PANEL AND ASSOCIATED COMPONENTS. DISCONNECT AND REMOVE FEEDER CONDUIT AND WIRING SERVING THIS PANEL. COORDINATE REMOVAL WITH DEMOLITION POWER RISER DIAGRAM, SHEET E19.			
(2) panel 20 " wide			
4. EXISTING PANEL MDPN SHALL REMAIN. DISCONNECT AND REMOVE SERVICE CONDUIT AND WIRING FEEDING PANEL. COORDINATE WITH ELECTRICAL SERVICE SEQUENCE OF CONSTRUCTION.			
Misc. wiring			
5. DISCONNECT AND REMOVE ELECTRICAL CONNECTION AND ALL ASSOCIATED CONDUIT AND WIRING BACK TO PANEL FROM WHICH IT IS SERVED.			
(1) CATV cabinet			
6. DISCONNECT EXISTING EQUIPMENT FROM ALL POWER AND COMMUNICATION SERVICES. REMOVE EQUIPMENT AND TURN			

$\left.\begin{array}{|l|c|c|c|}\hline \text { BASEMENT FLOOR LIGHTING \& POWER DEMOLITION PLAN: } & \text { lb } & \text { bf } & \mathbf{y d}^{\mathbf{3}} \\ \hline \text { OVER TO GOVERNMENTT. TELECOMMUNICATON SERVICE DROP } & & & \\ \hline \text { TO BUILDING SHALL BE REMOVED. } & & & \\ \hline \text { (2) EMCS MUX AND POWER CONDITIONER } & & & \\ \hline \text { 7. EXISTING CABLE TELEVISION SERVICE PEDESTAL. } \\ \text { DISCONNECT AND REMOVE SERVICE CABLES FROM SECONDARY } & & & \\ \text { SIDE OF SERVICE PEDESTAL. COORDINATE TERMIIAAION OF } \\ \text { TELEVISION SERVICE WITH CABLE UTILITY COMPANY FOR } \\ \text { DEMOLITION AND RE-ROUTING OF SERVICE. }\end{array}\right)$

Table 2-15. First floor lighting and power demolition plan
$\left.\begin{array}{|l|l|l|l|}\hline \text { FIRST FLOOR LIGHTING \& POWER DEMOLITION PLAN: } & \text { lb } & \text { bf } & \text { yd }^{\mathbf{3}} \\ \hline \text { (141) Fluorescent lighting fixtures (2x4) } & & & \\ \hline \text { (11) Fluorescent lighting fixtures (1x4) } & & & \\ \hline \text { (80) receptacles } & & & \\ \hline \text { (33) HD } & & & \\ \hline \text { (5) wall mounted lighting fixtures } & & & \\ \hline \text { (26) S inside circle - sprinkler? } & & & \\ \hline \text { (52v) switches } & & & \\ \hline \text { (11) fire alarm pulls } & & & \\ \hline \text { (1) Ceiling mounted down lighting fixture } & & & \\ \hline \text { (13) exit lights } & & & \\ \hline \text { (37) antenna/telephone outlets } & & \\ \hline \text { (10) emergency lighting } & & & \\ \hline \text { (5) clocks } & & & \\ \hline \text { 1. DISCONNECT AND REMOVE ELECTRICAL CONNECTION, } \\ \text { DISCONNECT SEITCH AND ALL ASSOCIATED CONDUIT AND } \\ \text { WIRING BACK TO PANEL FROM WHICH IT IS SERVED. } & & \\ \hline \text { Switch for existing chiller } & & \\ \hline \text { 2. DISCONNECT AND REMOVE EXISTING PANEL AND ASSOCIATED } \\ \text { COMPONENTS. DISCONNECT AND REMOVE FEEDER CONDUIT } \\ \text { AND WIRING SEERVING THIS PANEL. COORDINATE REMOVAL } \\ \text { WITH DEMOLITIO POWER RISER DIAGRAM, SHEET E19. }\end{array}\right)$

Table 2-16. Second floor lighting and demolition plan

SECOND FLOOR LIGHTING \& POWER DEMOLITION PLAN:	lb	bf	$\mathbf{y d}^{3}$
(30) Fluorescent lighting fixtures (2x4)			
(74) Fluorescent lighting fixtures (1x4)			
(153) receptacles			
(46) HD			
(6) wall mounted lighting fixtures			
(10) S inside circle - sprinkler?			
(56) switches			
(10) fire alarm pulls			
(4) exit lights			
(44) antenna/telephone outlets			
(10) emergency lighting			
1. DISCONNECT AND REMOVE ELECTRICAL CONNECTION AND ALL ASSOCIATED CONDUIT AND WIRING BACK TO PANEL FROM WHICH IT IS SERVED.			
(2) panels 6" x 24"			
2. DISCONNECT AND REMOVE EXISTING EQUIPMENT AND ASSOCIATED COMPONENTS. DISCONNECT AND REMOVE ALL ASSOCIATED CONDUIT AND WIRING.			
Typical of 10 motors			
3. DISCONNECT AND REMOVE EXISTING EQUIPMENT AND ASSOCIATED COMPONENTS. DISCONNECT AND REMOVE ALL ASSOCIATED CONDUIT AND WIRING.			
(1) CATV cabinet			
(1) telephone panel			

Table 2-17. Third floor lighting and power demolition plan
$\left.\begin{array}{|l|c|c|c|}\hline \text { THIRD FLOOR LIGHTING \& POWER DEMOLITION PLAN: } & \text { lb } & \text { bf } & \mathbf{y d}^{3} \\ \hline \text { (30) Fluorescent lighting fixtures (2x4) } & & & \\ \hline \text { (78) Fluorescent lighting fixtures (1x4) } & & & \\ \hline \text { (152) receptacles } & & & \\ \hline \text { (45) HD } & & & \\ \hline \text { (5) wall mounted lighting fixtures } & & & \\ \hline \text { (15) S inside circle - sprinkler? } & & & \\ \hline \text { (60) switches } & & & \\ \hline \text { (7) fire alarm pulls } & & & \\ \hline \text { (5) exit lights } & & & \\ \hline \text { (52) antenna/telephone outlets } & & & \\ \hline \text { (10) emergency lighting } & & & \\ \hline \text { 1. DISCONNECT AND REMOVE EXISTING PANEL AND ASSOCIATED } \\ \text { COMPONENTS. DISCONNECT AND REMOVE FEEDER CONDUIT } \\ \text { AND WIRING SERVING THIS PANEL. COORINATE REMOVAL } \\ \text { WITH DEMOLITION POWER RISER DIAGRAM, SHEET E19. }\end{array}\right)$

For this renovation project at Fort Bragg, the total demolition plans for Wings B and C (NOT including Wing A) will produce 165 tons of waste. These totals DO NOT include Wing A that was previously remodeled. Out of the 165 tons of waste, wood and concrete wastes make up 1453 bf and $4.7 \mathrm{yd}^{3}$ respectively.

This 165 tons of waste does NOT include the items in blue (listed below), which are things that can be reused directly (as opposed to recycled). Often, an installation will have many contemporary buildings which might require spare parts. Alternatively, the contractor may wish to keep or sell these things if they are relatively recent, or have some historic architectural value.

- (96) door hardware
- (214) blinds, drapes, window coverings and associated hardware complete at all windows
- (36) toilets
- (13) urinal
- (44) sinks
- (5) water cooler
- (14) shower heads
- (4) WATER HEATERS
- (2) BOILER
- 80 GALLON EXPANSION TANK
- 40 GALLON EXPANSION TANK
- SYSTEM PUMP
- EXHAUST FAN
- AIR COOLED WATER CHILLER ($9^{\prime} \times 20{ }^{\prime}=180 \mathrm{ft}^{2}$)
- AIR HANDLING UNIT
- UNDERGROUND FUEL TANK ($8{ }^{\prime} \times 20^{\prime}=160 \mathrm{ft}^{2}$)
- ELECTRIC HEATER
- FIRE DAMPER
- (14) THERMOSTAT
- ELECTRICAL BOXES
- (23) Floor Drains
- (25) Fluorescent lighting fixtures (1×8)
- (213) Fluorescent lighting fixtures (2×4)
- (877) Fluorescent lighting fixtures (1×4)
- (426) Duplex receptacle
- (30) Ceiling mounted duplex receptacle
- (17) Ceiling mounted down lighting fixture
- (16) wall mounted lighting fixtures
- (193) Switches
- (136) antenna/telephone outlets
- (29) Fire alarm pull
- (6) motors and (1) switch to be removed from AHU and BOILER
- panels 3.5' wide
- panel 20" wide
- CATV cabinet
- transformers
- (22) exit lights
- (30) emergency lighting
- clocks
- Switch for existing chiller
- panels 6" x 24 "
- Wiring and conduit typical of (34) motors
- Mechanical equipment panel
- telephone panel

3.0 Fort Campbell Duplex Family Housing Upgrade

The second building type selected for study is a family housing unit (FHU) duplex at Fort Campbell. This FHU type is quite common across the Army (see Figure 3-1 through 3-7). Renovation activities include:

* remove central carport
* remove selected drywall-wood stud partitions to reconfigure rooms
* remove and replace all kitchen appliances and cabinets
* remove and replace all bath fixtures
* construct garages at both ends of the duplex

Figure 3-1. Front of FHU duplex at Fort Campbell.

Figure 3-2. Carport of FHU duplex at Fort Campbell.

Figure 3-3. Side view of FHU duplex at Fort Campbell.

Figure 3-4. Back of FHU duplex at Fort Campbell.

Figure 3-5. Kitchen in FHU duplex at Fort Campbell.

Figure 3-6. Second view of kitchen in FHU duplex.

Figure 3-7. Bedroom in FHU duplex at Fort Campbell.

Figure 3-8. Accumulated waste, Fort Campbell remodeling site.
Unless noted, the quantity take-off totals in red in Table 3-1 are for one-half of the duplex unit. Each half is identical so the numbers below should be doubled for each duplex removed. Quantities shown below are best estimates based on demolition plans and site visits.

Table 3-1. Remodeling data for duplex FHU at Fort Campbell.

REFERENCED DEMOLITION NOTES	Ib	bf	yd^{3}
1. REMOVE EXISTING WNDOW UNITS \& FRAMES, INSECT SCREEN, AND ALL SEALANT. EXISTING BRICK SILL TO REMAIN EXCEPT AT LOCATIONS WHERE WNDOWS ARE TO RE BLOCKED-UP. REMOVE INTERIOR WOOD TRIM \& VINYL SHADES. TRIM CONTAINS LEAD PAINT. (SEE DWG. H-1)			
Remove all windows $=8$ total (see sizes below)			
Kitchen: $\left(3^{\prime} \times 3.5{ }^{\prime}\right)=1$; $\left(3.5^{\prime} \times 4^{\prime}\right)=1$ Total $\mathrm{ft}^{2}=24.5$	196		
Bedrooms: ($6^{\prime} \times 2.5$ ') $=2$; ($\left.3^{\prime} \times 4{ }^{\prime}\right)=1$ Total $\mathrm{ft}^{2}=42$	336		
Bathroom: (3' $\times 2.5$ ') $=1$ Total $\mathrm{ft}^{2}=7.5$	60		
Living Room: ($\left.5^{\prime} \times 44^{\prime}\right)=1 ;\left(3^{\prime} \times 4^{\prime}\right)=1$ Total $\mathrm{ft}^{2}=32$	256		
Trim: 120 ft (assuming $1 / 4^{\prime \prime}$ thick, $4^{\prime \prime}$ wide) $=(.083)(120)=9.96$ or $\sim 10 \mathrm{bf}$	30	10	
Vinyl Shades = 8			
2. REMOVE EXISTING EXTERIOR DOORS AND/OR ALUMINUM SCREEN DOORS, INCLUDING FRAMES, TRIM, PERIMETEFT SEALANT, AND HARDWARE. (SEE DWG. H-1)			
Total exterior doors: $3+1$ exterior utility door (1 per duplex)			
Front: $\left(3.75^{\prime} \times 7.5^{\prime}\right)=1 ;\left(3.5{ }^{\prime} \times 7.5^{\prime}\right)=1$ Total $\mathrm{ft}^{2}=54.375$	435		
Rear: ($\left.3.55^{\prime} \times 7.5{ }^{\prime}\right)=1 ;\left(4^{\prime} \times 7.5^{\prime}\right)=1 / 2$ Total $\mathrm{ft}^{2}=41.25$	330		
Screen Doors: 3 Total $\mathrm{ft}^{2}=80.625$	161		
Trim: 56 ft (assuming $1 / 4$ " thick, $4^{\prime \prime}$ wide) $=(.083)(56)=4.65$ or $\sim 5 \mathrm{bf}$	14	5	
3. REMOVE EXISTING EXTERIOR STORAGE APPENDAGE COMPLETELY, INCLUDING FOUNDATION, FLOOR SLAB, WALLS, AND ROOF.			
(8.5' $\left.\times 5.25{ }^{\prime}\right)=44.625 \mathrm{ft}^{2}$	2150		
4 " concrete slab $=0.535 \mathrm{yd}^{3}$	2167		0.535
Reinforcement $=46 \mathrm{lb}$	46		
Vinyl siding on 3 sides: ft^{2} surface area $=42+68+68-23=155 \mathrm{ft}^{2}$	71.3		
???Foundation:			
4. REMOVE EXISTING METAL CARPORT STRUCTURE COMPLETELY, INCLUDING FOUNDATION, FLOOR SLAB. METAL POSTS AND METAL ROOF. (SEE DWG H-1) LOCATIONS OF CARPORTS VARY, SEE CML DRANNOS FOR EXACT LOCATION BY UNIT ADDRESS.			
CENTER CARPORT *(divide by 2 for single unit of duplex)*			
$\left(20^{\prime} \times 20^{\prime}\right)=400 \mathrm{ft}^{2}$			
Corrugated metal roof: $400 \mathrm{ft}^{2}$			
(Standard b22 gage painted roof deck is $1.51 \mathrm{lb} / \mathrm{ft2})\left(400 \mathrm{ft}^{2}\right)=604 \mathrm{lb}$	300		
(24 gage 7/8" corrugated is 140 lb per square) $=4$ squares (140) $=560 \mathrm{lb}$			
4 " concrete slab $=4.8 \mathrm{yd}^{3}$ concrete OR $6^{\prime \prime}$ concrete slab $=7.6 \mathrm{yd}^{3}$	15390		3.8
Reinforcement: $4^{\prime \prime}=412 \mathrm{lb} ; 6^{\prime \prime}=606 \mathrm{lb}$	303		
Footings ($\left.2^{\prime} \times 2^{\prime} \times 12^{\prime \prime}\right): 0.333 \mathrm{yd}^{3}(6)=2 \mathrm{yd}^{3}$ concrete	4050		1
???Metal posts: 6 @ 8'			
???Metal supports for corrugated roof: 7 @ 20' long			
END CARPORT (one for each unit of duplex)			
$\left(12^{\prime} \times 20^{\prime}\right)=240 \mathrm{ft}^{2}$			
Corrugated metal roof $=240 \mathrm{ft}^{2}(1.51 \mathrm{lb} / \mathrm{ft} 2)=362 \mathrm{lb}(22$ gage) OR $336 \mathrm{lb}(24$	350		

gage)			
$\begin{aligned} & 4 \text { " concrete slab }=(240)(.012)=2.88 \text { yd }^{3} \text { OR } 6 \text { " concrete slab }=(240)(.019) \\ = & 4.56 \mathrm{yd}^{3} \end{aligned}$	18468		4.56
Reinforcement: $4^{\prime \prime}=247 \mathrm{lb} ; 6^{\prime \prime}=364 \mathrm{lb}$	364		
Footings (2' x $\left.2^{\prime} \times 12^{\prime \prime}\right): 0.333 \mathrm{yd}^{3}(4)=1.3 \mathrm{yd}^{3}$	5265		1.3
???Metal posts: 4 @8'			
???Metal supports for corrugated roof: 4 @ 20' long			
5. REMOVE EXISTING FLASHINGS AT LOCATIONS WHERE VENTS ARE TO BE REMOVED. (SEE MECHANICAL DWGS.)			
(1) roof vent $=.003$ ton	6		
Flashing: (1) ft = . 00036 ton	0.72		
6. REMOVE PARTS OF EXISTING ROOF, FASCIA SOFFIT, GUTTERS, DOWNSPOUTS AND SPLASHBLOCKS AS REQUIRED FOR GARAGE ADDITION.			
Gutter: 40 ft	20		
Fascia/soffit: 27 ft	40.5	20.25	
7. REMOVE EXISTING SIDING, TRIM, AND LOUVER AT GABLE ONLY. EXISTING SUBSTRATE TO REMAIN.			
Louver: $3.5 \mathrm{ft}^{2}(1 \mathrm{LB} / \mathrm{SF})=3.5 \mathrm{lb}$	3.5		
Vinyl Siding: $60 \mathrm{ft}^{2}$	27.6		
8. REMOVE EXISTING LOUVER ABOVE EXTERIOR MECHANICAL DOOR.			
$8^{\prime \prime} \times 32$ " $=1.78 \mathrm{ft}^{2}$	2		
9. REMOVE EXISTING WOOD ATIC ACCESS PANEL AND TRIM.			
Wood Panel: $\left(28{ }^{\prime \prime} \times 28 \mathrm{l}\right)=5.4 \mathrm{ft}^{2}(.75)=4 \mathrm{bf}$	13	4	
(3/4" plywood: $1 \mathrm{ft}^{2}=.75 \mathrm{bf}$)			
Trim: $8 \mathrm{ft}=0.664 \mathrm{bf}$	2	0.664	
(1/4" thick, $4^{\prime \prime}$ tall $=0.083 \mathrm{bf} / \mathrm{ft}$)			
10. EXISTING BUILDING SIGN FROM THE SIDE ELEVATION WHEN REQUIRED FOR NEW CONSTRUCTION AND TAG, STORE, AND SALVAGE FOR REUSE.			
Salvage for reuse			
11. REMOVE ALL BRACKETS, CLIPS, AND OTHER MISCELLANEOUS ITEMS ASSOCIATED WTH ELECTRICAL AND PLUMBING DEMOLITION. (SEE MECH. \& ELEC. DWGS. AND DWG. H-1)			
???Metal clip in rear elevation			
12. EXISTING MTL. MAILBOX, HOUSE NUMBER. SIGN AND NAMEPLATE MOUNTING BRACKET TO REMAIN.			
13. REMOVE CONC. WALK AND LANDING. (SEE CIVIL DWGS.)			
ND-2AF (middle carport): (17'x $\left.3^{\prime}\right)+\left(3^{\prime} \times 3^{\prime}\right)=60 \mathrm{ft}^{2} @ 4 " \mathrm{slab}=0.72 \mathrm{yd}^{3}$ concrete	2916		0.72
ND-2A (end carport): $\left(26^{\prime} \times 3^{\prime}\right)+\left(2^{\prime} \times 6.5^{\prime}\right)+\left(3^{\prime} \times 3^{\prime}\right)=100 \mathrm{ft}^{2} @ 4 "$ slab $=1.2$ $y^{2}{ }^{3}$ concrete	4860		1.2
14. DEMO. AND NEW AREA SHOWN IS APPROXIMATE (SEE PLUMBING \& ELECTRICAL DWGS.)			
Approximate $\mathrm{ft}^{2}=65 \mathrm{ft}^{2}$			
4" slab: $(.012)(65)=0.78 \mathrm{yd}^{3}$ OR 6" slab: $(.012)(65)=1.235 \mathrm{yd}^{3}$	5001		1.235
15. REMOVE EXISTING SHELVING AND SUPPORTS (SEE DRAWING H-1)			
Can't find a reference to 15 on the drawings			

16. REMOVE EXISTING DOOR SILL AT HANDICAPPED UNITS.			
Unit ND-2AH has a door sill @ 3.5 ft	1		
17. REMOVE EXISTING INTERIOR WOOD STUD FRAMING AND GYPSUM WALLBOARD FINISH COMPLETELY AS INDICATED FOR NEW WORK. PROVIDE SHORING AS REQUIRED FOR LOAD BEARING WALLS.			
52.25 ft of stud wall to be removed $=300 \mathrm{bf}$	3344	300	
$836 \mathrm{ft}^{2}$ of gypsum board to be removed $=1672 \mathrm{lb}$	1672		
18. REMOVE EXISTING VINYL FLOORING ADHESIVE COMPLETELY THROUGHOUT THE ROOM.			
$880 \mathrm{ft}^{2}$ of vinyl flooring ($\left.1.33 \mathrm{lb} / \mathrm{tt} 2\right)=1170.4$	1170.4		
19. REMOVE EXISTING BASE (VINYL IN KITCHEN AREA AND WOOD IN THE OTHER SPACES IN THE UNIT.			
Base trim in kitchen (vinyl): $31 \mathrm{ft}(4 \mathrm{\prime} \mathrm{\prime})=124 \mathrm{ft}^{2}(1.33)=165 \mathrm{lb}$	165		
Base trim (wood): 158 ft (assuming 1×41 thick, $4^{\prime \prime}$ wide) $=(.083)(158)=13 \mathrm{bf}$	40	13	
20. REMOVE CONCRETE PATIO, WOOD FENCE, AND CONC. MECH. PAD, (SEE CIVIL DWGS.)			
Patio: ($\left.{ }^{\prime} 5^{\prime} \times 12.5{ }^{\prime}\right)+\left(3^{\prime} \times 3^{\prime}\right)=196.5 \mathrm{ft}^{2}$			
4 " slab $=(196.5)(.012)=2.358 \mathrm{yd}^{3}$	9432		2.358
Mechanical Pad: (4' x 4') $=16 \mathrm{ft}^{2}$			
6 " slab $=(16)(0.19)=.304 \mathrm{yd}^{3}$	1152		0.304
21. REMOVE EXISTING CERAMIC TILE FROM FLOOR AND IN BATHROOM AREA. REMOVE EXISTING THRESHOLD. REMOVE ALL BATHROOM ACCESSORIES AND PLUMBING FIXTURES. FOR PLUMBING FIXTURES REFER TO MECHANICAL DRAWINGS.			
Ceramic tile floor: $96 \mathrm{ft}^{2}+$ Ceramic tile walls: $90 \mathrm{ft}^{2}=186 \mathrm{ft}^{2}$ tile	558		
Plumbing Fixtures: Toilet (1); Tub (1); Sink (1)			
Accessories: T.P. holder (1); Shower curtain rod (1); Towel bars (3); 22" Vanity cabinet (1)			
22. REMOVE EXISTING WALL AND BASE KITCHEN CABINETS, PLYWD. KITCHEN CABINETS SOFFIT, COUNTERTOPS, BACKSPLASH AND ANY OTHER MISCELLANEOUS SUPPORTS. REMOVE KITCHEN APPLIANCES AND RANGE HOOD. SEE MECH DWGS.			
Base cabinets $=10 \mathrm{ft}$	400		
Upper cabinets $=8 \mathrm{ft}$	160		
Pantry (8^{\prime}) $=2 \mathrm{ft}$	120		
Countertop: $7 \mathrm{ft}=14 \mathrm{ft}^{2}$	60		
Soffit: $12 \mathrm{ft}=14 \mathrm{ft}^{2}$	21	10.5	
Appliances: Stove, Refrigerator, Washer and Dryer			
Range Hood (1)			
23. REMOVE EXISTING INTERIOR DOORS, FRAMES, TRIM, AND HARDWARE. (SEE DWG. H-1)			
Closet doors: (3 sets) $=84 \mathrm{ft}^{2}$	210		
Interior doors: $(7)=122.5 \mathrm{ft}^{2}$	306		
Trim: 170 ft (assuming $1 / 4{ }^{\prime \prime}$ thick, $4^{\prime \prime}$ wide) $=(.083)(170)=14.11$ or $\sim 14 \mathrm{bf}$	43	14	
Door Hardware			
24. REMOVE EXISTING SHELVES, ROD, AND SUPPORTS. (SEE DWG. H1)			
5 Shelves in pantry (12" depth): $57.5 \sim 58 \mathrm{ft}=29 \mathrm{bf}$	87	29	

5 Shelves in Hall Closet (12" depth): $15 \mathrm{ft}=7.5 \mathrm{bf}$	23	7.5	
Bedroom Closets: $12 \mathrm{ft}=6 \mathrm{bf}$	18	6	
???Supports: Wood blocking			
FROM MECHANICAL \& PLUMBING NOTES			
ELECTRICAL			
Ceiling mounted luminaires (12)			
Wall mounted (2)			
Light switches (15)			
Duplex receptacles (22)			
Telephone outlet (4)			
HVAC			
(1) Air conditioning unit 2 ton (7kw)			
Flexible duct work $\sim 30 \mathrm{ft}$	126		
Wall register \& duct $\sim 48 \mathrm{ft}$	202		
Duct from range hood $\sim 1 \mathrm{ft}$	2		
Dryer vent (4") ~ 8-10 ft	8		
PLUMBING			
Gas Pipe (2" galvanized steel) $=206 \mathrm{ft}$	754		
Waste \& Vent Pipe (2' copper) $=75 \mathrm{ft}$	87		
Water Heater (1)			
TOTALS (using bold numbers - middle carport) ${ }^{2}$	54654	420	10
TOTALS (using non-bold numbers - end carport)	61041	420	11.5
TOTAL SUMS OF MATERIALS (AVG.)	29	420	10.75
	TONS	bf	yd^{3}

For the Fort Campbell duplex housing units, a single unit of the 2-unit duplex will produce 29 tons of waste. Out of the 29 tons of waste, wood and concrete wastes make up 420 bf and $10.75 \mathrm{yd}^{3}$ respectively. This 29 tons of waste does NOT include the items in blue (in Table 3-1), which are summarized in the following list:

- Vinyl Shades (8)
- Toilet (1)
- Tub (1)
- Sink (1)
- T.P. holder (1)
- Shower curtain rod (1)
- Towel bars (3)
- 22" Vanity cabinet (1)
- Base cabinets (24") $=10 \mathrm{ft}$
- Upper cabinets (12") $=8 \mathrm{ft}$
- Pantry ($24^{\prime \prime}$ x 8^{\prime}) $=2 \mathrm{ft}$
- Stove (1)

[^1]
15 October 2003

- Refrigerator (1)
- Washer (1)
- Dryer (1)
- Range Hood (1)
- Door Hardware
- Ceiling mounted luminaires (12)
- Wall mounted (2)
- Light switches (15)
- Duplex receptacles (22)
- Telephone outlet (4)
- Air conditioning unit (7kw) 2 ton (1)
- Water Heater (1)

Figures 3-9 to 3-14 show the same housing units after the remodeling project.

Figure 3-9. Remodeled FHU duplex at Fort Campbell.

Figure 3-10. Front of remodeled FHU duplex at Fort Campbell.

Figure 3-11. Front brick on remodeled FHU duplex.

Figure 3-12. Remodeled kitchen in Fort Campbell duplex.

Figure 3-13. Remodeling of Fort Campbell duplex.

Figure 3-14. Remodeled bedroom in Fort Campbell duplex.

4.0 Fort Bragg Barracks Upgrade

The third building selected for study is a "rolling pin" style barracks at Fort Bragg. This is a whole barracks renewal project where all of the building is removed down to the concrete structure. The goal was to reconstruct the barracks to make the living conditions more apartment-like and desirable to improve soldier retention.

The quantities in Table 4-1 were calculated from the original construction drawings, with the assumption that everything is removed, except for the structural elements. This was double-checked against field photographs (Figures 4-1 through 4-3). Quantities are based on floor plans for a rolling-pin 3-story brick barracks (nominal $\mathrm{ft}^{2}=37,292$).

Figure 4-1. Project sign, Fort Bragg.

Figure 4-2. Fort Bragg barracks before remodeling.

Figure 4-3. Second view of Fort Bragg barracks.

Table 4-1. Remodeling data from rolling-pin barracks.

ROLLING PIN DEMOLITION	Ib	yd^{3}
CONCRETE		
10" mechanical room foundation ($12 \mathrm{l} \times 135 \mathrm{ft}=1620 \mathrm{ft}^{2}$)	202,500	50
$12^{\prime \prime}$ mechanical room foundation ($12 \mathrm{l} \times 17 \mathrm{ft}=204 \mathrm{ft}^{2}$)	30,375	7.5
10" basement foundation ($4^{\prime} \times 565 \mathrm{ft}=2260 \mathrm{ft}^{2}$)	283,500	70
6" concrete pad ($\left.2^{\prime} \times 4^{\prime}\right)=8 \mathrm{ft}^{2}(3)=24 \mathrm{ft}^{2}$	1728	0.43
6 " concrete pad (2' ${ }^{\prime} 2.5$) $=5 \mathrm{ft}^{2}$	360	0.08
$2^{\prime} \times 2^{\prime}$ Footings $=26 \mathrm{ft}$	15,730	3.85
$1^{\prime} \times 2$ 2' Footings $=28 \mathrm{ft}$	8484	2.07
$1^{\prime} \times 1^{\prime}$ ' Footings $=11 \mathrm{ft}$	1661	0.407
Concrete joist floor 20" wide bay $=27104 \mathrm{ft}^{2}\left(.027 \mathrm{yd}^{3} / \mathrm{ft}^{2}\right)=732 \mathrm{yd}^{3}$	3,008,544	732
5 " slab on grade mechanical room floor $=740 \mathrm{ft}^{2}$	44,400	11
ROOF		
Cement tile roof $13552 \mathrm{ft}^{2}$	203,280	
EXTERIOR WALLS		
4" common brick (15,775 ft ${ }^{2}$)(46 lb/ft ${ }^{2}$)	725,650	
INTERIOR WALLS		
6" CMU first floor $=717 \mathrm{ft} \mathrm{(8')}=5736 \mathrm{ft}^{2}$	200,760	50
6 " CMU second floor $=997 \mathrm{ft}\left(8^{\prime}\right)=7976 \mathrm{ft}^{2}$	279,160	69
6" CMU third floor $=997 \mathrm{ft}\left(8^{\prime}\right)=7976 \mathrm{ft}^{2}$	279,160	69
WINDOWS		
(58) type $\mathrm{w} 1\left(12^{\prime} \mathrm{X} 5^{\prime}\right)=60 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{t}^{2}\right)$	27,840	
(22) type w2 (8' $\times 5^{\prime}$) $=40 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{ft}^{2}\right)$	7040	
(8) type w3 (4' x 5') $=20 \mathrm{ft}^{2}\left(8 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1280	
DOORS		
(4) exterior double door ($\left.5.5^{\prime} \times 7^{\prime}\right)=38.5 \mathrm{ft}^{2}\left(9 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1386	
(153) single interior doors ($\left.3^{\prime} \times 7^{\prime}\right)=21 \mathrm{ft}^{2}\left(5 \mathrm{lb} / \mathrm{tt}^{2}\right)$	16,065	
(8) double doors ($\left.5^{\prime} \times 7^{\prime}\right)=35 \mathrm{ft}^{2}\left(5 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1400	
(4) double doors in stairway ($\left.6^{\prime} \times 7^{\prime}\right)=42 \mathrm{ft}^{2}\left(9 \mathrm{lb} / \mathrm{ft}^{2}\right)$	1512	
(1) Main Entrance (6' l^{\prime}) $=42 \mathrm{ft}^{2}\left(9 \mathrm{lb} / \mathrm{ft}^{2}\right)$	378	
PLUMBING		
(14) Urinals		
(22) Toilets		
(26) Sinks		
(3) Scrub sinks		
(4) Showers		
TOTALS	$\begin{array}{r} 5,342,193 \\ (2,671 \text { tons }) \end{array}$	1,065

NOTE: These quantities were taken from the building plans. In a remodeling project, not all of these quantities would be calculated and other quantities not listed here would need to be included. From the plan, exact quantities of items such as light fixtures, floor tiles, pipes, ducts, etc., are not known.

As shown in Figures 4-4 through 4-6, the transformation of the rolling-pin barracks was dramatic.
Residents receive a much improved living space, and the exterior appearance is much more pleasant.

Figure 4-4. Barracks remodeling project at Fort Bragg.

Figure 4-5. Second view of barracks remodeling project.

Figure 4-6. Another view of rolling-pin barracks remodeling.

5.0 Extensive List of Weights of Building Components

This list of material weights has been compiled from many different sources, including American Society of Civil Engineers (ASCE), Associated General Contractors (AGC), US Army Corps of Engineers (USACE) databases, and manufacturers. CERL staff had to develop a few of the values internally.
These values were used to quantify the waste materials from the Army remodeling projects studied in this report.

Table 5-1. Door-related weight conversions

Door Type	Weight (lb/unit)
windows, glass, frame, and sash	$8 / \mathrm{ft}^{2} / \mathrm{ft}$
wood trim 4" wide	$0.25 / \mathrm{t}$
door (2-1/4" thick white pine)	$4.5 / \mathrm{ft}^{2}$
door (1-3/4" thick solid core)	$5 / \mathrm{ft}^{2}$
door (2-1/4" thick oak)	$9 / \mathrm{ft}^{2}$
door (1-3/4" thick hollow core)	$2.5 / \mathrm{ft}^{2}$
exterior door (same as window)	$8 / \mathrm{ft}^{2}$
hollow metal	$6.5 / \mathrm{ft}^{2}$
hollow metal door frame	$1.4 / \mathrm{ft}$
screen door (1/4 door)	$2 / \mathrm{ft}^{2}$

Table 5-2. Concrete weight conversions

Form of Concrete	Weight (lb/unit)
reinforced concrete (stone)	$4,050 / \mathrm{yd}^{3}$

PWTB 200-1-24
15 October 2003

reinforced concrete (stone)	150/ft ${ }^{3}$
concrete fill per inch thickness	12/ft ${ }^{2}$
concrete floor, plain per 1" thickness	12/ft ${ }^{2}$
concrete floor, reinforced 1"	12.5/ft ${ }^{2}$
concrete curb, 4" high x 8" thick (.008 yd ${ }^{3} / \mathrm{ft}$)	29/ft
$6 \mathrm{6} \mathrm{\prime} \mathrm{\prime}$ concrete slab (unreinforced)	72/ft ${ }^{2}$
10" thick foundation wall	125/ft ${ }^{2}$
12" thick foundation wall	150/ft ${ }^{2}$
Footings 1' x 1 ' including reinforcing	151/ft ${ }^{2}$
Footings 1' x 2' including reinforcing	303/ft
Footings 2' ${ }^{\prime}$ 2' including reinforcing	605/ft
Concrete joist 20" wide form, 6" depth of slab	111/ft ${ }^{2}$

Table 5.3. Wall surface weight conversions

Siding/Wall Covering	Weight (Ib/unit area)
vinyl siding	$46 / \mathrm{square}$
plywood (1/2")	$1.5 / \mathrm{ft}^{2}$
plywood (3/4")	$2.4 / \mathrm{ft}^{2}$
gypsum (1/2")	$2 / \mathrm{ft}^{2}$
plywood (1/8" thick), e.g.,paneling	$0.4 / \mathrm{ft}^{2}$

Table 5-4. Flooring weight conversions

Floorcovering	Weight (lb/ft2)
vinyl flooring/trim, $1 / 8^{\prime \prime}$	1.33
ceramic tile, glazed wall 3/8"	3
Ceramic tile floor, 1 " mortar bed	23
Ceramic tile floor, $1 / 2^{\prime \prime}$ mortar bed	16
Ceramic tile floor, $3 / 4^{\prime \prime}$	10

Table 5-5. Miscellaneous sheet metal weight conversions

Metals	Weight (lb/unit)
gutters (.032" thick)	$0.471 / \mathrm{ft}$
louvers 16 ga. Galvanized or cold rolled steel	$2.042 / \mathrm{ft}^{2}$
louvers 14 ga. Extruded aluminum alloy	$0.913 / \mathrm{ft}^{2}$
louvers 12 ga. Extruded aluminum alloy	$1.16 / \mathrm{ft}^{2}$

Table 5-6. Miscellaneous metal fence and pipe weight conversions

Metal Duct	Weight (lb/unit)
Gas Pipe (2" galvanized steel)	$3.66 / \mathrm{ft}$
Waste \& Vent Pipe (2"" copper)	$1.164 / \mathrm{ft}$
steel stair nosings	$1 / \mathrm{ft}$
Chain-link fence fabric	$0.696 / \mathrm{ft}^{2}$
Chain-link fence corner/end posts (2-1/2"" O.D.)	$2.315 / \mathrm{ft}$
Chain-link fence support/middle posts (1-5/8" O.D.)	$1.431 / \mathrm{ft}$
Galvanized steel H posts	$3.26 / \mathrm{ft}$
Aluminum H posts	$1.25 / \mathrm{ft}$
Roll formed steel line posts 1.625" x 1.875"	$2.34 / \mathrm{ft}$
Roll formed steel brace rails and top rails 1.25 "" $\times 1.625 "$	$1.35 / \mathrm{ft}$

Table 5-7. Wall structure weight conversions

Walls	Weight (lb/unit)
2" x 4" studs, 8' high, = $5.33 \mathrm{bf} /$ stud	0.75 (ft) +1
2" $\times 4$ " studs, 10 ' high, $=6.667 \mathrm{bf} /$ stud	0.75 (ft) +1
2×4 studs, 1/2" gyp each side	$8 / \mathrm{ft}^{2}$
6" Drywall on wood studs	10/ft ${ }^{2}$
2×4 wood stud, plywood, two sides	$7 / \mathrm{ft}^{2}$
plywood (1/8" thick), e.g., paneling	$0.4 / \mathrm{ft}^{2}$
$6 \mathrm{6} \mathrm{\prime} \mathrm{cmu}$ wall, lightweight, gwb	35/ft ${ }^{2}$
8" cmu wall, lightweight, gwb	$47 / \mathrm{ft}^{2}$
8" concrete block, lightweight, no gwb	35/ft ${ }^{2}$
8" concrete block, stone or gravel, no gwb	$55 / \mathrm{ft}^{2}$
8 " hollow cmu wythes 24 " o.c. grout spacing	46-54/ft ${ }^{2}$
8" solid conc. Block, (stone aggregate lightweight)	$67 / \mathrm{ft}^{2}\left(48 / \mathrm{ft}^{2}\right)$
8" hollow conc. Block (stone aggregate)	$55 / \mathrm{ft}^{2}\left(38 / \mathrm{ft}^{2}\right)$
4" Brick, low absorption	$46 / \mathrm{ft}^{2}$
Furring 1" $\times 3$ " wood strips	.25/ft

Gypsum furring, $1^{\prime \prime} \times 3$ " wood strips 0.75 ft per ft^{2}	$0.25 \mathrm{bf} / \mathrm{ft}$
Gypsum furring, $1^{\prime \prime} \times 3$ " wood strips 0.75 ft per ft^{2}	$0.1875 \mathrm{bf} / \mathrm{ft}^{2}$

Table 5-8. Partition weight conversions

Misc. Partitions	Weight (Ib/ft)
Removable steel partitions	4
Toilet partitions (1/2 of hollow metal door)	3.25

Table 5-9. Ceiling and roof weight conversions

Ceilings/Roof	Weight (lb/ft)
Acoustical tile unsupported per 1/2"	0.8
Acoutical Fiber Board	1
Suspended Steel Channel System	2
Batt Insulation (per 1" thickness)	$0.1-0.4$
Built-up Roof tar \& gravel	5.5
Built-up Roof	6.5
Cement tile roof	15

Table 5-10. Piping weight conversions

Piping	Weight (lb/ft)
3/4" steel pressure tubing	1.13
4" steel pipe	10.79
6" steel pipe	18.97
10" steel pipe	40.48
14" steel pipe	54.75
16" steel pipe	62.58
18" steel pipe	70.59
1" copper tubing (type L and ACR)	0.655
1-1/2" copper tubing (type L and ACR)	1.14
2" copper tubing (type L and ACR)	1.75
2-1/2" copper tubing (type L and ACR)	2.48
3" copper tubing (type L and ACR)	3.33
4" copper tubing (type L and ACR)	5.38
3" PVC (schedule 80)	1.903
4" PVC (schedule 80)	2.782
electrical conduit (1/2" steel)	0.82
electrical conduit (1" steel)	1.6

Table 5-11. Cabinet weight conversions

Cabinets	Weight (lb/ft)
wood upper wall cabinets	20
wood lower base cabinets	40

15 October 2003

6.0 References

Air Force Center for Environmental Excellence (AFCEE). Construction and Demolition Waste Management Guide. http://www.afcee.brooks.af.mil/green/resources/resources.asp

American Society of Civil Engineers [ASCE], Minimum Design Loads for Buildings and Other Structures [ASCE 7-95] (ASCE, 1995), p. 137.

Corson, Jennifer. The Resourceful Renovator. Chelsea Green Publishing, 2000.
Dolan, Patrick J., Richard G. Lampo, and Jacqueline C., Dearborn, Concepts for Reuse and Recycling of Construction and Demolition Waste, CERL Technical Report 99/58, June 1999. http://www.hnd.usace.army.mil/techinfo/CPW/pwtb.htm

Hoke, J.R., ed. Architectural Graphic Standards, 8th ed. pp. 472, 588-589, and 812.
RS Means Company, Assemblies Cost Data, 22nd Annual Edition 1997, pp. 4, 251, and 537-539.
RS Means Company, Building Construction Cost Data, 55th Annual Edition 1997, p. 530.
Meyer, Kimberley and Eric Lund. Waste Management and Recovery: A Field Guide for Residential Remodelers. National Association of Home Builders - Research Center, 2001 (?). http://www.nahbrc.org

USEPA, Characterization of Building-Related Construction and Demolition Debris in the United States. EPA530-R-98-010, June 1998. http://www.epa.gov/oswer

Walker, Frank R., Walker's Pocket Estimator Chapter 6, pp. 108-109.
Yost, P. and E. Lund, Residential Construction Waste Management: A Builder's Field Guide (National Association of Home Builders [NAHB], January 1997), p. 6. http://www.nahbrc.org

PWTB 200-1-24
15 October 2003

7.0 Acronyms and Glossary

\varnothing - diameter
bf - board foot or board feet
Board foot - A board foot represents a volume of wood 1 inch thick by 12 inches wide by 12 inches long. The nominal dimensions are used for this calculation, e.g., use 2 and 4 rather than the actual measurements of a " 2×4."

EPA - U.S. Environmental Protection Agency
FHU - Family Housing Unit
ft^{2} - square foot or square feet
GBW - gypsum wallboard (drywall)
Quantity Take Off - A method of estimating quantities of construction materials, usually based on drawings.
yd^{3} - cubic yard

PWTB 200-1-24
15 October 2003

This publication may be reproduced

[^0]: ${ }^{1}$ A board foot represents a volume of wood 1 inch thick by 12 inches wide by 12 inches long. The nominal dimensions are used for this calculation, e.g., use 2 and 4 rather than the actual measurements of a " 2×4."

[^1]: ${ }^{2}$ There are two different site layouts

